Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257297

RESUMEN

Ceratocarpus arenarius (Chenopodiaceae) is an under-investigated annual plant that occurs in dry areas stretching from eastern and south-eastern Europe to East Asia. This article presents the botanical characterization and examination of proximate parameters, minerals and cytotoxic activity of C. arenarius that grows wild in Kazakhstan. The results of morphological analysis using a light microscope, based on cross-sections of stems, roots and leaves, provide the necessary data to develop a regulatory document for this herbal substance as a raw material for use in the pharmaceutical, cosmetic and food industries. The investigated proximate characteristics included moisture content (6.8 ± 0.28%), ash (5.9 ± 0.40%), fat (12.5 ± 21.28%) and protein (392.85 ± 25.50). The plant is also rich in minerals (mg/100 g dry weight); Na (20.48 ± 0.29), K (302.73 ± 1.15), Zn (4.45 ± 0.35), Fe (1.18 ± 0.03), Cu (0.11 ± 0.02), Mn (0.76 ± 0.01), Ca (131.23 ± 0.09) and Mg (60.69 ± 0.72). The ethanolic extract of C. arenarius showed no acute toxicity against the brine shrimp nauplii.


Asunto(s)
Antineoplásicos , Chenopodiaceae , Animales , Minerales , Artemia , Asia Oriental
2.
Molecules ; 28(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38005278

RESUMEN

Bacillus species produce different classes of antimicrobial and antioxidant substances: peptides or proteins with different structural compositions and molecular masses and a broad range of volatile organic compounds (VOCs), some of which may serve as biomarkers for microorganism identification. The aim of this study is the identification of biologically active compounds synthesized by five Bacillus species using gas chromatography coupled to mass spectrometry (GC-MS). The current study profoundly enhances the knowledge of antibacterial and antioxidant metabolites ensuring the unambiguous identification of VOCs produced by some Bacillus species, which were isolated from vegetable samples of potato, carrot, and tomato. Phylogenetic and biochemical studies were used to identify the bacterial isolates after culturing. Phylogenetic analysis proved that five bacterial isolates BSS12, BSS13, BSS16, BSS21, and BSS25 showed 99% nucleotide sequence similarities with Bacillus safensis AS-08, Bacillus cereus WAB2133, Bacillus acidiproducens NiuFun, Bacillus toyonesis FORT 102, and Bacillus thuringiensis F3, respectively. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including yeast strains such as Candida albicans, Candida krusei, and bacterial strains of Enterococcus hirae, Escherichia coli, Klebsiella aerogenes, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Shigella sonnei, Salmonella enteritidis, Serratia marcescens, Pseudomonas aeruginosa, and Proteus vulgaris. GC-MS analysis of bacterial strains found that VOCs from Bacillus species come in a variety of chemical forms, such as ketones, alcohols, terpenoids, alkenes, etc. Overall, 69 volatile organic compounds were identified from five Bacillus species, and all five were found to share different chemical classes of volatile organic components, which have a variety of pharmacological applications. However, eight antibacterial compounds with different concentrations were commonly found in all five species: acetoin, acetic acid, butanoic acid, 2-methyl-, oxime-, methoxy-phenyl, phenol, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, nonanoic acid, and hexadecanoic acid, methyl. The present study has demonstrated that bacterial isolates BSS25, BSS21, and BSS16 display potent inhibitory effects against Candida albicans, while BSS25, BSS21, and BSS13 exhibit the ability to restrain the growth and activity of Candida krusei. Notably, BSS25 and BSS21 are the only isolates that demonstrate substantial inhibitory activity against Klebsiella aerogenes. This disparity in inhibitory effects could be attributed to the higher concentrations of acetoin in BSS25 and BSS21, whereas BSS16 and BSS13 have relatively elevated levels of butanoic acid, 2-methyl-. Certainly, the presence of acetoin and butanoic acid, 2-methyl-, contributes to the enhanced antibacterial potential of these bacterial strains, in conjunction with other organic volatile compounds and peptides, among other factors. The biology and physiology of Bacillus can be better understood using these results, which can also be used to create novel biotechnological procedures and applications. Moreover, because of its exceptional ability to synthesize and produce a variety of different antibacterial compounds, Bacillus species can serve as natural and universal carriers for antibiotic compounds in the form of probiotic cultures and strains to fight different pathogens, including mycobacteria.


Asunto(s)
Antiinfecciosos , Bacillus , Enterobacter aerogenes , Compuestos Orgánicos Volátiles , Antibacterianos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Antioxidantes/farmacología , Ácido Butírico/farmacología , Acetoína/análisis , Filogenia , Antiinfecciosos/farmacología , Escherichia coli , Bacillus cereus , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049972

RESUMEN

Numerous natural habitats, such as soil, air, fermented foods, and human stomachs, are home to different Bacillus strains. Some Bacillus strains have a distinctive predominance and are widely recognized among other microbial communities, as a result of their varied habitation and physiologically active metabolites. The present study collected vegetable products (potato, carrot, and tomato) from local markets in Almaty, Kazakhstan. The bacterial isolates were identified using biochemical and phylogenetic analyses after culturing. Our phylogenetic analysis revealed three Gram-positive bacterial isolates BSS11, BSS17, and BSS19 showing 99% nucleotide sequence similarities with Bacillus subtilis O-3, Bacillus subtilis Md1-42, and Bacillus subtilis Khozestan2. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Candida albicans, Candida krusei, Pseudomonas aeruginosa, Shigella sonnei, Klebsiella pneumoniae, Salmonella enteritidis, Klebsiella aerogenes, Enterococcus hirae, Escherichia coli, Serratia marcescens, and Proteus vulgaris. This study found that the species that were identified have the ability to produce antibiotic chemicals. Additionally, the GC-MS analysis of three bacterial extracts revealed the presence of many antibiotic substances including phenol, benzoic acid, 1,2-benzenedicarboxylic acid and bis(2-methylpropyl), methoxyphenyl-oxime, and benzaldehyde. This work sheds light on the potential of Bacillus to be employed as an antimicrobial agent to target different multidrug-resistant bacterial strains. The results indicate that market vegetables may be a useful source of strains displaying a range of advantageous characteristics that can be used in the creation of biological antibiotics.


Asunto(s)
Antiinfecciosos , Bacillus , Humanos , Antibacterianos/farmacología , Bacillus/genética , Verduras , Filogenia , Bacillus subtilis , Escherichia coli , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...